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Abstract The present paper extends the granular-flow constitutive model of Savage (1998 J Fluid Mech
377:1–26) to treat spherical particles. Savage accounted for both quasi-static and collisional stresses by con-
sidering: (i) strain-rate fluctuations embodied in a critical state plasticity model, as well as, (ii) individual
particle velocity fluctuations modelled by granular-flow kinetic theory. In the present work, the governing
equations of the kinetic theory of Jenkins (1998 In: Hermann HJ, Luding S (eds) Physics of Dry Granular
Media. Kluwer Academic pp. 353–370) for identical spherical, smooth, inelastic particles are supplemented
with additional quasi-static terms that have forms patterned after the corresponding terms in the equa-
tions of Savage for two-dimensional disk-like particles. The resulting equations along with side-wall and
free-surface boundary conditions are applied to examine free-surface granular flow down a heap contained
between two frictional vertical side walls. Width-averaged equations of motion are integrated to obtain
depth profiles of mean velocity, granular temperature, solids fraction and the Savage–Jeffrey parameter.
Detailed comparisons are made with particle-tracking experiments. When the gap between the vertical
side walls is fairly narrow, good agreement is found between the predicted and the measured profiles of
mean velocity and granular temperature.

Keywords Collisional stresses · Constitutive equations · Free-surface granular flow · Kinetic theories ·
Quasi-static stresses

1 Introduction

Over the past half-century a great deal of effort has been devoted to the development of constitutive
equations for granular materials. Nevertheless, to a large degree, the accurate prediction of the flows
of these materials over a wide range of shear rates and solids concentrations remains an unresolved
problem. Some success has been achieved in modelling two limiting flow regimes: (a) the quasi-static,
rate-independent, plastic regime which has received extensive attention in the soil-mechanics litera-
ture, and (b) the fully dynamic rapid flow regime (called the grain-inertia regime by Bagnold [1]). Very
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sophisticated and detailed constitutive models have been devised by soil mechanicists to handle slow defor-
mations of high-concentration materials characteristic of the quasi-static granular-flow regime [2–11].

Granular-flow kinetic theories for idealized, dissipative particles have been developed to treat the other
extreme regime of rapid flows at low and moderate concentrations [12–16]. The kinetic energy associated
with the translational velocity fluctuations is analogous to the definition of the kinetic temperature of a gas
at the molecular level. The translational velocity fluctuation is defined as c = (v − u), where v is the instan-
taneous particle velocity, u = 〈v 〉 is the mean transport velocity and the brackets designate an ensemble
average. The translational granular temperature is defined as T = 〈c2〉/3, where 3T/2 is the specific kinetic
energy of the translational velocity fluctuations. These kinetic theories have been based on hard-sphere
models previously devised for dense fluids at the molecular level [17,18]. The ‘hard particle’ assumption is
a key element in the granular-flow kinetic theories. In this limit of infinitely stiff particles, the collisional
contact times tend to zero, and thus, only binary collisions need to be considered. The particle-collision
dynamics can be treated in a straightforward way and the evaluation of the Boltzmann collision integral
and the determination of various transport coefficients are difficult, but manageable. When the concen-
tration is high, the particles are softer and the deformation rates are low, as in the quasi-static regime, the
particles typically experience multiple contacts that are long lasting rather than identifiable, short term,
‘collisions’. One cannot analyze the particle interactions in a straightforward way as in the case of rapid
flow. The particle interactions are not limited to binary ones and the constitutive modelling is, of necessity,
more empirically based.

While the two limiting flow regimes are of intrinsic interest and importance, there are many industrial
and natural geophysical granular flows that occur in an intermediate, transitional flow regime that lies
between them. It is particularly difficult to devise constitutive models intended to handle this high concen-
tration, rapid flow regime involving extended interparticle frictional contacts and significant quasi-static
stress contributions. For the most part, only ad hoc approaches that, in effect, patch together the results
from the two extreme flow regimes have been proposed thus far. Savage [19] suggested that, for the case
of a gravity-driven free-surface chute flow, one might represent the total stresses as the linear sum of a
rate-independent, dry-friction part plus a rate-dependent ‘viscous’ part obtained from the high-shear-rate
granular-flow kinetic theories. The magnitude of the rate-independent contribution was chosen such that
the sum of the two parts satisfied the overall momentum equation perpendicular to the flow direction.
More detailed analyses based on this approach were formulated by Johnson and Jackson [20] and Johnson
et al. [21]. While reasonable results were obtained for these particular problems, it was not obvious how
the approach could be extended to handle more general kinds of flow problems.

Savage [22] pursued a somewhat different approach to develop a microscopic theory for slow, high-
concentration flows at low stress levels. It considered stresses resulting from both collisional particle
interactions as well as longer-term frictional contacts. To keep things as simple as possible, the grains were
considered to be uniform-size rods or disks, rather than physically more realistic three-dimensional par-
ticles. Savage introduced strain-rate fluctuations [23] into a critical-state plasticity model that is similar in
form to those proposed for quasi-static, pressure-dependent yielding of soils. The root-mean-square values
of the strain-rate fluctuations were related to the granular temperature. The forms of various expressions
and constants involved in the model were chosen so that the predictions for high deformation rates were
consistent with the collisional, granular-flow kinetic theory of Jenkins [15] for disks. At low deformation
rates, the apparent form of the constitutive behaviour was similar to that of a liquid in the following sense.
The effective viscosity decreased with increasing granular temperature, as opposed to rapid granular flows
in which viscosity increases with increasing granular temperature. Savage [22] considered two example
flows: (a) an infinite simple shear flow in the absence of gravity, and (b) the flow down a long, rough-walled
vertical channel. For simple shear flow, the resulting expressions for stresses were comprised of two parts;
a rate-independent part, and a part that has a quadratic dependence on shear rate. Similar Bingham-like
expressions have been proposed in the past on a more ad hoc basis. The second analysis that dealt with slow
flow down a rough-walled, vertical channel was able to reproduce the observed experimental characteristics
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of nearly constant-thickness side-wall boundary layers (of about 10 particle diameters) with plug flow in
the centre, regardless of the gap between the vertical side walls. The constitutive modelling in the present
work is based on extensions of this previous work of Savage [22].

1.1 Granular surface flow as a prototype spanning all flow regimes

A particularly interesting rheological granular-flow case study is that of a hopper-fed, gravity-driven, free-
surface granular flow down a wedge-shaped pile of ‘static’ granular material. Such a pile can be generated
by pouring granular material between two vertical walls on to a rough horizontal rectangular plate that
acts as a base between the two vertical walls. The wedge-shaped pile will grow and reach an equilibrium
steady state when the free surface corresponds to the angle of repose and the mass-flow rate of granular
material past the edge of the horizontal base plate equals the mass-flow rate supplied by the hopper. In the
middle region of the inclined upper free surface a steady fully developed flow is established in which the
flow-field properties are independent of downstream distance. Near the free surface, the particle motions
can be very vigorous such that the flow corresponds to the rapid-flow, grain-inertia regime where the
interparticle collisions are nearly instantaneous. Farther down from the free surface, the concentration
increases, particles experience longer-term, multiple contacts and the quasi-static stress contributions are
significant. Deep into the pile, the deformation rates tend to zero, the concentration tends to limiting values
and the stress states correspond to the quasi-static regime or a static state. Thus, in one very simple flow
geometry, the flows span the full range from the rapid-flow, grain-inertia regime to the quasi-static regime
or even a static state. The velocities decay in an approximately exponential fashion with depth and there
is no need to impose a ‘bed’ boundary condition in theoretical modelling of such flows.

1.2 Recent investigations of granular surface flows

Recently, the problem of surface flow down a heap of granular material as described above has been exam-
ined both theoretically and experimentally. A review of dense granular flows in various configurations,
including surface flow down heaps and surface flows in rotation drums is contained in [24]. While there
are some similarities between the surface flows in rotating drums [25–31] and those down static heaps, the
rotating-drum flows exhibit variations in velocity, flow thickness, and surface inclination in the downstream
direction that make them of less interest to the present work that deals with fully developed heap flows.
Thus, we shall restrict our attention to granular surface flows down static piles in the brief review that
follows.

Andreotti and Douady [32] devised a simple theoretical model for surface flows in which spherical
grains were assumed to move in layers parallel to the free surface. They accounted for the driving force
of gravity, the dissipation due to interparticle collisions, and the trapping of grains between the bumps of
the underlying layer of particles. The velocity profiles and flow depths were determined as a function of
surface-inclination angle. Khakhar et al. [33] performed a more traditional depth-averaged hydrodynamic-
type analysis in which they assumed the shear stresses were composed of a Bagnold-type collisional stress
which depended on the square of the shear rate, and a Coulomb frictional stress involving an effective
coefficient of dynamic friction. The velocity profile was assumed to be linear. Complementary experiments
were performed with steel balls (2 ± 0.2 mm diameter) flowing between vertical transparent PMMA walls
spaced 10 mm apart. They measured the maximum free-surface inclination angle βm and the layer thick-
ness δ, as functions of the mass-flow rate. Some experiments were performed in an open system in which
grains exited a hopper into the main container and proceeded to flow out of its downstream end. They also
performed experiments in a closed system to determine streamwise variations of layer thickness, but these
are not of interest here.
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Somewhat earlier, Lemieux and Durian [34] carried out related experimental measurements of the
transition from intermittent avalanching flows to continuous granular surface flows. The experiments of
Komatsu et al. [35] found that a very slow creeping flow exists deep in the pile below the rapidly flowing
surface layer. The mean velocity of the creeping motion decayed exponentially with depth.

Bonamy and Mills [36] proposed that the flows could be separated into two ‘phases’, a ‘solid’ phase
that experienced slow creeping motions and a more rapidly flowing phase near the upper surface. They
formulated a non-local constitutive law and applied it to solve for (a) the surface granular flow down an
infinite pile, and (b) steady surface flows in large rotating drums. A linear velocity profile was obtained for
the region near the upper surface and a profile that decayed exponentially with depth was found for deeper
regions. Bonamy and Mills [36] obtained reasonable agreement between this theory and experiments
performed with steel beads in a rotating drum by Bonamy et al. [25].

Taberlet et al. [37] measured the variation of the free-surface inclination with discharge rate for the flow
of sand between vertical plates having different spacings. For narrow gaps they observed a strong increase
in surface inclination with increasing flow rate. These experiments called attention to the sizeable effects
of side-wall friction.

Josserand et al. [38] adopted a phenomenological description of the constitutive behaviour following
Savage [19] and Johnson and Jackson [20]. Stresses were assumed to be made up of a collisional Bagnold-
like term that depended on concentration and the square of the shear rate, and a quasi-static contribution
that depended on solids concentration. One of the problems they analysed, based on this constitutive
behaviour, was fully developed surface flow down a static heap. Velocity and solids-concentration profiles
were determined. They found a Bagnold-like velocity profile near the free surface, a linear velocity profile
somewhat lower down, and an exponentially decaying velocity profile deeper in the pile.

Jop et al. [39] have performed detailed experiments that further elucidated the importance of side-wall
friction effects on granular surface flows. In these studies, the free-surface inclination was found to increase
with flow rate for a constant gap width W between the vertical side walls, and to increase at a given flow
rate with decreasing W. The thickness of the surface flow was found to increase with increasing gap width
W. Because of the frictional side walls, the surface velocity profile was found to vary across the width of the
flow. Jop et al. [39] proposed an empirical friction law developed from the basal friction model of Pouliquen
and Forterre [40]. Jop et al. [39] predicted velocity profiles across the depth by using this friction law and
accounting for the effects of sidewall friction. Their model showed that the depth of flow decreased with
decreasing gap width W as was observed in their experiments. They noted some discrepancies between the
observed and predicted shapes of the velocity profiles. Their model predicted a zero shear rate at the free
surface whereas the experiments showed a finite value there. The model also predicted a finite thickness of
flow above a static pile of material whereas the observations revealed an exponentially decaying velocity
deep into the pile.

1.3 Present investigation

Constitutive equations for the present work are obtained by extending the slow, high-concentration, strain-
rate fluctuation theory of Savage [22] for disk-like particles to treat three-dimensional, spherical particles
(cf. previous discussion in Sect. 1). The model of Savage [22] attempted to account for both quasi-static and
collisional stresses. It was based on the assumption of fluctuations in strain rates [23] as well as individual
particle-velocity fluctuations of the kind handled in the granular-flow kinetic theories. The quasi-static
contributions arose from the strain-rate fluctuations embodied in the critical-state plasticity model. In the
present analysis we shall introduce terms in the governing equations that are intended to account for
the effects of the long-term frictional contacts. However, we shall add them in a somewhat more ad hoc
fashion than was done in [22]. As a starting point, we make use of the granular-flow kinetic theory of
Jenkins [16] for spherical, smooth, inelastic particles. This is assumed to be appropriate to handle rapid
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flows at moderate concentrations in the collisional flow regime. We then append to the governing equations
of Jenkins [16] the additional quasi-static terms that have forms patterned after the corresponding terms
in the equations of Savage [22] for two-dimensional disk-like particles. The resulting equations are thus
formulated to handle, in a relatively simple way, flows that range from the slow, quasi-static flow regime to
the rapid-flow, collisional, grain-inertia flow regime.

These governing equations are used to examine a simple shear flow. Various flow characteristics are
determined as functions of a generalized coefficient of restitution that attempts to account for dissipative
processes of a more general kind than those due to normal collisional impacts. Next, the free-surface gran-
ular flow down a heap contained between two rough vertical side walls is analysed. Boundary conditions
that consider stress, particle velocity, granular temperature and solids fraction at the free surface and at
the vertical solid side walls are considered. The equations of motion corresponding to a width-averaged
flow are integrated to obtain depth profiles of mean velocity, granular temperature, solids fraction and
the Savage–Jeffrey parameter [13]. Detailed comparisons are made with particle-tracking experiments of
Jesuthasan [41,42].

2 Governing conservation and constitutive equations

2.1 Granular-flow kinetic theory of Jenkins

We begin by summarizing some results of the granular-flow kinetic theory formulated by Jenkins [16] for
identical, spherical, smooth, inelastic particles. The Chapman–Enskog transport equation [43, Sect. 14.4]
was used to obtain the equations expressing the conservation of mass, momentum and fluctuation kinetic
energy (i.e., the granular-temperature equation) given by

∂ρ

∂t
+ ∂(ρ ui)

∂xi
= 0 , (1)

ρ
Dui

Dt
= ρ

(
∂ui

∂t
+ uj

∂ui

∂xj

)
= ρgi − ∂pij

∂xj
, (2)

3
2

ρ
DT
Dt

= 3
2

ρ

(
∂T
∂t

+ uj
∂T
∂xj

)
= −pij

∂ui

∂xj
− ∂qj

∂xj
− γ , (3)

where ρ = ν ρp is the bulk mass density, ν is the solids volume fraction, ρp is the mass density of the
individual particles, t is time, ui is the velocity component in the xi-direction, gi is the component of the
gravitational acceleration in the xi-direction, pij is the symmetric pressure tensor, T is the granular temper-
ature, qi is the flux of particle fluctuation energy in the xi-direction, and γ is the rate of energy dissipation
per unit volume arising from inelastic collisions.

For non-equilibrium flows of dissipative particles, Jenkins assumed the velocity distribution function to
be a perturbed Maxwellian. To leading order, most of the constitutive relations are the same as the classical
results for a dense fluid comprised of perfectly elastic, smooth, spherical particles as presented in [18, Sect.
16.34]. The only expression that is different is the collisional dissipation term γ that appears in the particle
fluctuation energy equation (3). The pressure tensor (in which compressive stress is taken as positive) is
given by

pij = (p − � ekk) δij − 2µ eij , (4)

where the pressure p is

p = ρ T (1 + 4 G) , (5)
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and the bulk viscosity � is

� = 8
3
√

π
ρ σ T1/2 G, (6)

where σ is the particle diameter. The rate-of-strain tensor is

eij = 1
2

[
∂ui

∂xj
+ ∂uj

∂xi

]
, (7)

and

G = ν g0 , (8)

where g0(ν) is the radial distribution function. In the present work we shall use the expression proposed
by Lun and Savage [14] and subsequently employed by Johnson and Jackson [20] (see also [13,44]), i.e.,

g0(ν) = 1[
1 − (ν/ν∞)1/3

] (9)

in which ν∞ = 0.64 is the maximum solids fraction at closest packing.
The shear viscosity µ is expressed as

µ =
√

π

6
ρ σ T1/2

[
1 + 5

16 G
+ 4 G

5

(
1 + 12

π

)]
, (10)

and the energy flux vector is

qi = −κ
∂T
∂xi

, (11)

where the conductivity κ is

κ = 15
√

π

16
ρ σ T1/2

[
1 + 5

24 G
+ 6 G

5

(
1 + 32

9 π

)]
. (12)

The collisional rate of energy dissipation per unit volume is given by

γ = 24 (1 − e) ρ G T
σ

[
T
π

]1/2

, (13)

where e is the coefficient of restitution for the particles.
We are concerned here primarily with dense, high-concentration flows in which the solids fraction

ν > 0.4. The expressions (5), (10) and (12) for p, µ and κ contain kinetic as well as collisional terms. At
high concentration, the kinetic terms are negligible and these expressions can be further approximated
and expressed in the forms

p = 4 ρ G T , (14)

µ = 2 σ p

5 (π T)1/2

[
1 + π

12

]
, (15)

κ = σ p

(π T)1/2

[
1 + 9 π

32

]
. (16)

Similarly, the expression (6) for the bulk viscosity � can be rewritten as

� = 2 σ p

3 (π T)1/2
. (17)

Finally, Eq. 13 for the collisional rate of energy dissipation per unit volume can be rearranged in the form

γ = 6 (1 − e) p
σ

[
T
π

]1/2

. (18)
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2.2 Inclusion of quasi-static contributions

The constitutive equations just presented are based on the assumption of instantaneous binary particle
collisions. We now modify them in an ad hoc way in an attempt to account for the existence of long-term
frictional-rubbing contacts. We shall add quasi-static terms whose forms are chosen by mimicking the cor-
responding constitutive expressions derived for the two-dimensional strain-rate fluctuation, critical-state
plasticity model of Savage [22]. This model was based on the assumption of an elliptical yield function. The
centre of the ellipse corresponded to the mean normal stress, a. It was assumed that the yield ellipse grows
in size with increases in solids fraction ν and granular temperature T. It was further assumed that a(ν, T)

was composed of the sum of two contributions such that

a(ν, T) = aν(ν) + aT(ν, T) , (19)

where aν(ν) is the quasi-static contribution and aT(ν, T) is the collisional pressure contribution that in the
present case would correspond to the granular-flow kinetic-theory expression (14)

aT(ν, T) = 4 ρ G T . (20)

The quasi-static contribution was assumed to have the form

aν(ν) = a0 log

[
ν∞ − ν0

ν∞ − ν

]
, (21)

where a0 is a reference value of aν , ν∞ is the solids fraction corresponding to closest packing, and ν0 is
the minimum solids fraction. Note that in the present work we shall assume a slightly different alternative
form in which there is an explicit cut-off of the quasi-static contribution when the solids fraction is less
than a minimum value ν0, i.e.,

aν(ν) = a0

[
ν − ν0

ν∞ − ν

]
for ν0 ≤ ν ≤ ν∞ ,

aν(ν) = 0 for ν < ν0 .
(22)

The strain-rate fluctuation, critical-state plasticity model of Savage [22] produced expressions for the
constitutive formulas for µ, κ and γ that had functional forms similar to Eqs. 10, 12 and 13 obtained from
the above kinetic theory. The slight difference was that a, which included both quasi-static and collisional
contributions, appeared in µ, κ and γ in place of the mean collisional pressure p that can be factored out
of the collisional kinetic theory expressions. In the present analysis we assume that aT(ν, T) is equal to the
mean pressure p given by (14) and that aν(ν) is given by (22) analogous to that used previously by Savage
[22].

To include quasi-static effects in the present modelling we merely replace the mean pressure p that
appears in (4), (15–17) and (18) by

a(ν, T) = aν(ν) + aT(ν, T) = a0

[
ν − ν0

ν∞ − ν

]
+ 4 ρ G T , (23)

which includes both quasi-static and collisional contributions, and aν(ν) is given by (22). Hence, we can
write for the pressure tensor, shear viscosity, bulk viscosity and conductivity

pij = (a − � ekk) δij − 2µ eij , (24)

µ = 2 σ a

5 (π T)1/2

[
1 + π

12

]
, (25)

� = 2 σ a

3 (π T)1/2
, (26)
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κ = σ a

(T π)1/2

[
1 + 9 π

32

]
. (27)

The expression for the collisional rate of energy dissipation per unit volume can be rearranged in the form

γ = 6 (1 − eg) a

σ

[
T
π

]1/2

, (28)

where we have replaced e, the restitution coefficient for inelastic normal collisions, in (18) by eg, which
we interpret as a generalized restitution coefficient that in a crude empirical way can account for both
dissipative normal impacts and the effects of frictional particle interactions. Jenkins’ model [16] does not
explicitly include energy dissipation due to frictional particle interactions and the use of eg is a rough
attempt to take some account of these effects. Increasing friction would thus correspond to a decrease in
eg and a larger rate of collisional energy dissipation.

3 Simple shear flow

Let us consider the case of a steady-state, simple shear flow in the absence of gravity in which ∂u1(x2)/∂x2 =
∂u(y)/∂y = const., u2 = v = 0 and u3 = w = 0. The continuity equation (1) and the momentum equation
(2) are identically satisfied. The granular temperature will be uniform, and the energy equation (3) reduces
to a balance between the shear work and the collisional energy dissipation, i.e.,

− pxy
∂u
∂y

− γ = µ

[
∂u
∂y

]2

− γ = 0 . (29)

Substituting (25) and (28) for µ and γ in (29) we obtain

σ 2

T

[
du
dy

]2

= R2 = 15 (1 − eg)

(1 + π/12)
, (30)

where R = σ (du/dy)/
√

T is the so-called Savage–Jeffrey [13] parameter. Figure 1 shows a plot of R versus
the generalized restitution coefficient eg.

By making use of (24) and (25) we can express the shear stress as

− pxy = 2 µ exy = µ
∂u
∂y

= 2 σ a

5 (π T)1/2
(1 + π/12)

∂u
∂y

. (31)

Finally, by making use of (23) and (30), the shear stress can be written as

− pxy = 2 σ

5 π1/2
(1 + π/12)

[
a0

[
ν − ν0

ν∞ − ν

]
+ 4 ρ G σ 2

R2

[
∂u
∂y

]2
]

. (32)

This has the form of an extended Bingham-type fluid with a power-law dependence on shear rate that
has previously been proposed to describe the behaviour of granular materials [45–49]. For a particular
solids fraction ν, the first term on the right-hand side of (32) is a constant term that is independent of shear
rate and the second term depends on the square of the shear rate as in the classical paper of Bagnold [1].
The x- and y-components of the pressure tensor are equal and given by (24) as

pxx = pyy = a (33)

in which a is composed of a rate-independent term and a term that depends on the square of the shear rate.
The ratio of shear to normal stress is equal to the ratio of the components of the pressure tensor |pxy/pyy |.
It is independent of solids fraction and the shear rate and is given by∣∣∣∣pxy

pyy

∣∣∣∣ =
[

12 (1 − eg) (1 + π/12)

5 π

]1/2

. (34)
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Fig. 1 Variation of the Savage–Jeffrey parameter R with
the generalized restitution coefficient eg for the case of sim-
ple shear flow
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Fig. 2 Variation of dynamic friction angle φd (degrees) with
the generalized restitution coefficient eg for the case of sim-
ple shear flow. Comparison of present theory (solid line)
given by (34) with computer simulations of Hopkins and
Shen [50] (filled circles) and Lun and Bent [51] (open trian-
gles)

We can define a dynamic friction angle φd = arctan |pxy/pyy|. Figure 2 shows the dynamic friction angle φd
determined from (34) and plotted as a function of the generalized restitution coefficient eg. Also shown in
Fig. 2 are results of the Molecular Dynamics and Monte Carlo simple shear flow simulations of Hopkins
and Shen [50] and the Molecular Dynamics simulations of Lun and Bent [51], both of which are consistent
with similar calculations of Walton and Braun [52]. The simulations are for the case of frictionless particles
such that eg → e, and the plotted values correspond to a solids fraction ν = 0.5. The kinetic-theory result
given by (34) is very close to the simulations for high e, but departs somewhat from them as e is decreased.
The kinetic-theory analysis is, in effect, a small-parameter expansion for small inelasticity (1 − e) and it is
expected to become inaccurate as (1 − e) increases.

4 Analysis of granular surface flow down a heap

Let us consider the free-surface granular flow down a heap as shown in Fig. 3 where x is the streamwise
coordinate aligned parallel to the upper surface that is inclined at an angle θ to the horizontal, y is the
coordinate perpendicular to the free surface and oriented in the downward direction into the pile, and z
is oriented perpendicular to the x–y plane of the figure. The flow is assumed to take place between two
vertical side walls that are perpendicular to the z-direction and spaced a distance b apart. The side walls
are frictional and can have a significant effect on the flow, but the gap b is taken to be sufficiently small
such that we can neglect the z-variations of certain flow properties. Thus, we shall approximate the flow as
steady, fully developed, and two-dimensional, and solve the conservation equations for the y-distributions
of the velocity u in the streamwise x-direction, the solids fraction ν, and granular temperature T.

4.1 Governing equations for steady, fully developed flow

Since we assume a steady, fully developed flow, there are no variations of flow quantities in the x-direction,
i.e., ∂/∂x = 0 and the mean velocity components in the y and z-directions vanish; thus, v = 0 and w = 0.
We further assume that the transverse z-variations of streamwise velocity u, granular temperature T, and
solids fraction ν are small. The governing conservation equations eventually can be reduced to ordinary
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Fig. 3 Diagram of
free-surface granular flow
down a heap

x

y

0

u
θ

differential equations that only involve variations with the y-coordinate. Note that the continuity equation
(1) is identically satisfied. The x and y-components of the linear momentum equation (2) can be expressed
as

ρ
Du
Dt

= 0 = ρg sin θ − ∂pxy

∂y
− ∂pxz

∂z
, (35)

ρ
Dv
Dt

= 0 = ρg cos θ − ∂pyy

∂y
, (36)

and the fluctuation energy equation (3) reduces to

3
2

ρ
DT
Dt

= 0 = −pxy
∂u
∂y

− ∂qy

∂y
− ∂qz

∂z
− γ . (37)

The mean velocity of the particles at the frictional side walls is directed in the x-direction, so that pressure
tensor components pxz = pzx can develop. But, we assume that there is no wall shear stress acting in
the y-direction and hence, in writing (36) we have taken pyz = pzy = 0. The right-hand side of (37) was
obtained by assuming that ∂u/∂z � 0. We make the approximation that pxz and qz vary linearly across the
width z such that

pxz = p 0
xz (1 − 2 z/b) and qz = q 0

z (1 − 2 z/b) , (38)

where p 0
xz and q 0

z correspond, respectively, to the shear stress and fluctuation energy flux at the side wall,
z = 0. Hence, we can express ∂pxz/∂z and ∂qz/∂z that, respectively, appear in (35) and (37) as follows

∂pxz

∂z
= − 2

b
p 0

xz and
∂qz

∂z
= − 2

b
q 0

z , (39)

where expressions for p 0
xz and q 0

z will be determined in the following subsection by consideration of the
boundary conditions at the vertical side walls.

4.2 Boundary conditions

In order to completely specify the governing equations (35–39), and to subsequently carry out their
integration from the upper surface down into the pile, we must define boundary conditions both at the
upper surface and at the vertical side walls.

4.2.1 Upper-surface boundary conditions

We begin by considering the boundary conditions at the upper surface of the flow. It is convenient to divide
the flow vertically into two regions; a lower region that encompasses most of the particulate domain, and
an upper surface region that comprises one, or in some cases, a few layers of particles. Both the flux of
fluctuation energy and the particle stress should vanish at the upper surface. If we view the region occupied
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by the granular material as a continuum, then the solids fraction near the surface tends to zero sharply or
even discontinuously. If the particles are packed together as a plug flow, such that the granular temperature
is zero, then the free surface can be unambiguously defined. For the usual instances, where there are more
vigorous interactions between particles that give rise to a significant granular temperature, the treatment
of the boundary conditions at the free surface is less distinct, particularly when one considers matters on
the individual-particle scale.

The treatment of the free-surface boundary conditions has been examined by Johnson et al. [21]. They
first considered the case of more moderate granular temperatures near the free surface and took account of
the discrete nature of the particulate material. Johnson et al. [21] considered a force balance for a particle
in the layer adjacent to the upper free surface. The components of the weight of a particle in the uppermost
layer were equated to the associated shear and normal forces that can be deemed to act on an underlying
plane area parallel to the upper surface, i.e.,

π

6
ρp σ 3 gi = pij nj ac , (40)

where ac is the area associated with the individual particle, pij is the stress acting on ac at the top of the
underlying layer just beneath the particle, and nj is the inward directed unit normal. Following Bagnold
[1], the average distance between particles was defined as s and the solids fraction was expressed as

ν = ν∞
[

σ

σ + s

]3

, (41)

such that ν → ν∞ as s → 0. Thus, the area ac associated with one particle in the top layer was expressed as

ac = σ 2
[ν∞

ν

]2/3
. (42)

In the case of more rapid flows, where there are more vigorous particle interactions, a dilute saltating
region can develop at the upper surface.

In the present analysis we shall assume that the normal stress pyy that appears in (40) is purely collisional
and given by (14). This enables us to obtain an expression for the granular temperature T1 one particle
diameter below the ‘free surface’. Thus, from (40) and (42) we find

T1 = π

24
σ g cos θ

ν1 G1

[
ν1

ν∞

]2/3

, (43)

where ν1 and G1 correspond respectively to values of the solids fraction and G one particle diameter below
the ‘free surface’.

4.2.2 Side-wall boundary conditions

We next consider the boundary conditions for the shear stress and the fluctuation energy flux at the vertical
solid side walls by following an approach similar to that of Johnson et al. [21]. The mean velocity of the
particles adjacent to the side wall is in the x-direction and the shear stress developed by the wall acts in
the negative x-direction so as to resist the motion. We relate the side wall shear stress to the normal stress
acting perpendicular to the wall through the use of a wall friction angle δ. Thus, we can express p 0

xz at the
wall, z = 0 as
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p 0
xz = − p 0

zz tan δ = − p 0
yy tan δ = − pyy tan δ = − a tan δ (44)

since we approximate pzz = pyy = a as being independent of z.
Johnson et al. [21] considered the energy balance for a small volume that enclosed an element of the

solid boundary and derived the condition

n·q 0 = −D − u 0·S 0
c , (45)

where n is the unit normal to the wall directed into the granular material, q 0 is the particle fluctuation
energy flux at the wall, D is the rate of energy dissipation due to inelastic collisions with the wall, u 0 is the
particle mean slip velocity at the wall and S 0

c is the collisional force per unit area at the wall. Note that
the first term −D on the right-hand side of (45) is negative and gives rise to a reduction of the granular
temperature, whereas the last term −u 0·S 0

c is positive and corresponds to a production of granular tem-
perature. We assume that the wall-slip velocity u 0 is approximately equal to the mean streamwise velocity
u and that the collisional shear stress at the wall is given by the product of the collisional normal pressure,
aT = 4 ρ G T, and the wall friction coefficient, tan δ. Thus, we can rewrite (45) as

q 0
z = −D + u aT tan δ = −D + 4 ρ G T u tan δ . (46)

Following Johnson et al. [21] and Nott and Jackson [53] we express the wall collisional energy dissipation
D as

D =
√

3 π ρp (ν/ν∞) (1 − e2
w) T3/2

4
[
1 − (ν/ν∞)1/3

] , (47)

where ew is the coefficient of restitution between the particles and the side wall.

4.3 Reduced form of governing equations

By making use of the approximations (38), the boundary conditions given by (44), (46) and (47), we
can rearrange the governing equations (35–37) in the form of the coupled system of ordinary differential
equations as follows
dpxy

dy
= ρg sin θ − 2 pyy

b
tan δ , (48)

dpyy

dy
= ρg cos θ , (49)

d
dy

[
κw

dw
dy

]
+ 1

2 µ
p 2

xy − γ

2
+ 1

b
q 0

z = 0 , (50)

where w(y) = T1/2, and from (25), (27), and (28) with a = pyy, we can write

µ = 2 σ pyy

5
√

π w

[
1 + π

12

]
, (51)

w κ = σ pyy√
π

[
1 + 9 π

32

]
, (52)

γ = 6 (1 − eg) pyy w

σ
√

π
. (53)

From the definition of the shear stress given by (24) we obtain an equation for the velocity profile
du
dy

= − 1
µ

pxy , (54)

and from (23) we obtain an expression that can be used to solve for the solids-fraction distribution, i.e.,

a = pyy = a0

[
ν − ν0

ν∞ − ν

]
+ 4 ρp ν2 w2[

1 − (ν/ν∞)1/3
] . (55)
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4.4 Integration of governing equations

We now describe the approximate approaches used to integrate the governing equations and obtain the
profiles of mean velocity, granular temperature, the Savage–Jeffrey parameter, solids fraction and related
flow variables. Note that in an actual physical situation, such as the experiments of Jesuthasan [41,42], the
mass-flow rate is fixed at the outlet of the supply hopper. Thus, the surface flow inclination angle, mean
velocity u, granular temperature T, and solids fraction ν develop so as to be consistent with a steady fully
developed flow. Hence, the flow field is established as a function of the flow rate. In our calculations, the
flow rate is inversely connected to the flow field as follows. We specify a value for the granular temperature
at the upper layer and proceed to calculate the profiles of T, u and ν from which we could subsequently
determine the mass-flow rate.

We first consider Eqs. (48) and (49) and approximate the mass density ρ that appears in these equations
by a mean density ρ = ρp ν over the depth of flow under consideration. We then integrate (49) over y from
the position just below the top layer of particles where the normal stress is given by p (1)

yy = 4 ρp ν1 G1 T1.
Thus, we find

pyy = p (1)
yy + ρ g cos θ y , (56)

where as implied above, the origin of the y-coordinate is taken to be one particle diameter below the upper
surface. Integrating (48) in a similar way we obtain

pxy = p (1)
yy tan θ + ρ g cos θ y − 2 tan δ

b

[
p (1)

yy y + ρ g cos θ
y2

2

]
. (57)

We next solve (50) in an iterative fashion. Let us begin by neglecting the last term, q 0
z /b, on the left-hand

side of (50). What remains in (50) is an ordinary differential equation for w(y) involving pyy and pxy that
have just been determined. Using the NDSolve routine contained in the software system Mathematica 5.0,
Eq. 50 can be integrated numerically over y starting with trial value of w = w1 = T1/2

1 . We then determine
the mean velocity u from (54) and (51) such that u → 0 at large depths. Then, the previously determined
values of w, u, and the assumed mean value of ρ are used to determine q 0

z from (46) and (47). This relation
for q 0

z is used in (50) which is again numerically integrated using the NDSolve routine to determine w as
a function of y. The mean velocity u is recalculated with the revised expression for w. Finally, by using (55)
and the expressions for pyy and w, it is possible to determine the variation of ν with depth y.

4.5 Numerical results and comparisons with experimental measurements of Jesuthasan

4.5.1 Jesuthasan’s particle-tracking experiments on free-surface granular flows

Jesuthasan [41,42] has performed digital particle-tracking velocimetry (DPTV) measurements of a free-
surface granular flow down a wedge-shaped pile of ‘static’ granular material. The granular flow took place
between two vertical glass walls that were spaced a distance b apart. The tests involved a series of spac-
ings of b = 25.4, 38.1 and 50.8 mm, and for each spacing, three mass-flow rates were tested. The three
nominal mass-flow rates per unit width ṁ/b were 0.81, 1.85 and 3.33 kg s−1 m−1. The test particles were
nearly uniform, spherical ceramic (zirconium silicate) beads having a mean effective diameter of 1.59 mm
and mass density of, 4,071 kg/m3. Digital images of the granular flows in the fully developed region were
obtained by a high speed digital camera system. The commercial PTV software package DiaTrackPro
2.3 was used along with especially written Matlab routines to obtain the particle trajectories and profiles
of mean velocity, granular temperature, and the Savage–Jeffrey parameter at the glass side wall.
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Table 1 Values of
particle and channel wall
properties used in
calculations

Quantity Symbol Value

Particle diameter σ 1.59 mm
Particle mass density ρs 4071 kg/m3

Maximum solids fraction ν∞ 0.64
Minimum frictional solids fraction ν0 0.50
Wall friction angle δ 14◦
Particle coefficient of restitution eg 0.86
Wall coefficient of restitution ew 0.8

Table 2 Values of width
between side walls b,
surface inclination angle
θ , and mass flow per unit
width ṁ/b, in various test
runs of Jesuthasan [41]

Test run b θ ṁ/b (kg s−1 m−1)

AA 16 σ 20.9◦ 0.78
AC 16 σ 23.5◦ 3.29
BC 24 σ 22.8◦ 3.38
CC 32 σ 21.7◦ 3.33

4.5.2 Comparison of theoretical predictions with the experiments of Jesuthasan

The previous section Sect. 4.4 discussed the procedures used to integrate the governing differential equa-
tions. Here we present the results of the numerical integrations to determine the profiles of the mean
streamwise velocity u, the granular temperature T, the solids fraction ν, the Savage–Jeffrey parameter R,
the collisional contributions to the normal pressure, and the total normal pressure. The predicted profiles
of u, T and R are compared with the corresponding experimental profiles measured by Jesuthasan [41] in
four representative test runs.

Tables 1 and 2 show the values of various particle and channel wall properties and flow geometries
associated with the calculations and the experiments. The values of the particle diameter σ and mass
density ρp, the wall friction angle δ, the width between the side walls b (in particle diameters σ ), the
free-surface inclination angle θ , and the mass-flow rate per unit width ṁ/b correspond to those measured
in the experiments. The remaining quantities ν∞, ν0, eg and ew are assumed values that are thought to be
reasonable. They were not chosen or adjusted to achieve better fits of the theory to the experiments of
Jesuthasan [41].

Run AA. Figure 4(a–g) show the results of the calculations for run AA of [41] having values for the
channel width b, and surface inclination angle θ , as specified in Table 2. The value of w1 = T1/2

1 , at one
particle diameter from the upper surface, was chosen to approximate the experimentally measured value.
No particular effort was taken to optimize the fit between the theoretically predicted and experimentally
measured mean velocities and granular temperatures, and it is possible that better agreement could be
obtained by fine-tuning the value of w1. Figure 4(a) shows good agreement between the predicted mean
velocity u and the experimental measurements of [41] for run AA. The predicted velocity is plotted using
semi-log coordinate scales in Fig. 4(b). The fact that the curve of velocity is nearly a straight line indicates
that the velocity exhibits an almost exponential decay with depth. Figure 4(c) shows reasonably good
agreement between the predicted and measured granular-temperature profiles. Figure 4(d) shows the pre-
dicted variation of solids fraction ν with depth y. Near the upper free surface, the particles are loosely
packed, but further down the solids fraction is close to the maximum packing value ν∞. Figure 4(e) shows
the predicted and measured variation of the Savage–Jeffrey parameter R with depth y. Both the mean
velocity u and the granular temperature T are quite small for depths y > 0.01 m. Hence, the experimentally
determined value of R, which depends on the ratio of the velocity gradient du/dy and the square root of
the granular temperature T, is subject to some uncertainty and scatter. Nevertheless, the analysis predicts
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Fig. 4 Variation of flow quantities with depth y. Predictions compared with data from experiment AA of Jesuthasan [41]
in (a), (c) and (e). (a) streamwise mean velocity u, (b) streamwise mean velocity u, (c) granular temperature T, (d) solids
fraction ν, (e) Savage–Jeffrey parameter R, (f) aT (dash line); total pressure a (solid line), (g) ratio aT/a

the proper trend of R versus y. Note that because of the side-wall friction, R decreases with depth. An
approximation that has been used previously (for example, see the discussion in [54]) has been to assume
in the granular-temperature energy equation, that there is a balance between the shear work term and
the collisional energy dissipation. This assumption would yield a constant value for R over the depth. We
also find that if the flow is assumed to be two-dimensional, and wall friction is neglected, then the present
governing equations again will yield a constant value of R over the depth of the flow. Figure 4(f) shows the
variation of the total normal pressure a = pyy with depth (indicated by a solid line), and the depthwise
variation of aT , the collisional contribution to the pressure, (indicated by a dashed line). Figure 4(g) shows
the ratio of aT/a plotted as a function of depth y. Near the upper free surface, the pressure is due almost
entirely to interparticle collisions, but as the depth increases, the quasi-static contribution becomes more
important, and at large depths the pressure pyy arises essentially from the quasi-static effects.

Run AC. Similar calculations were performed for run AC of Jesuthasan [41] and some results are shown
in Fig. 5(a–d). In going from run AA to run AC, the mass-flow rate per unit width ṁ/b was increased by
a factor of about 4.2 and the corresponding free-surface inclination angle θ increased from 20.9◦ to 23.5◦.
The depth of flow remained much the same in these two runs. But, at a given depth, the mean velocity u
was larger in run AC than in run AA by a factor of roughly 4.2. There is reasonable agreement between



236 S. B. Savage

0 0.01 0.02 0.03 0.04 0.05

y (m)

y (m)

y (m)

0

0.025

0.05

0.075

0.1

0.125

0.15

0.175

ve
lo

ci
ty

, u
 (

m
/s

)

0 0.01 0.02 0.03 0.04 0.05
0

0.0002

0.0004

0.0006

0.0008

gr
an

ul
ar

 te
m

pe
ra

tu
re

,T
(m

/s
)2

0 0.01 0.02 0.03 0.04 0.05

0.1

0.2

0.3

0.4

0.5

0.6

so
lid

s
fr

ac
tio

n,
n

0 0.01 0.02 0.03 0.04 0.05

y  (m)

0.25

0.5

0.75

1

1.25

1.5

R

a b

c d

Fig. 5 Variation of flow quantities with depth y. Predictions compared with data from experiment AC of Jesuthasan [41]
in (a), (b) and (d). (a) streamwise mean velocity u, (b) granular temperature T, (c) solids fraction ν, (d) Savage–Jeffrey
parameter R

the predicted and measured profiles of u and T. The experimental values of R are in the same range as
the predicted values, but as in the previous case AA, the measurements are scattered. The remaining
calculations for run AC were found to have characteristics similar to the corresponding ones for run AA,
but for the sake of brevity they are not presented here.

Run BC. Results of calculations corresponding to the experimental run BC of Jesuthasan [41] are shown
in Fig. 6(a–d). Run BC involved the same nominal flow rate per unit width ṁ/b as for run AC, but the
channel width was increased from 16σ to 24σ , with a corresponding decrease in the free-surface inclination
angle from 23.5◦ to 22.8◦. There is reasonably good agreement between the experimental and predicted
profiles for u and T. The agreement between the experimental and predicted R profile is not as good, but,
for the most part, the trends are similar. Figure 7 compares the experimental u velocity profiles for runs
BC and AC. The measured wall velocities for run BC are slightly smaller than those for run AC despite
the fact that the nominal mass-flow rates per unit width were the same for both runs. Hence, one can infer
that the velocities in the center of the channel for run BC were somewhat larger than those measured at
the wall.

Run CC. Fig. 8(a–d) show results of calculations corresponding to the experimental run CC of
Jesuthasan [41]. Run CC involved the same nominal flow rate per unit width ṁ/b as for run AC and
BC, but the channel width was increased from 24σ to 32σ with a corresponding decrease in the free-
surface inclination angle from 22.8◦ to 21.7◦. For this run, the agreement between the experimental and
predicted profiles for u and T is not as good as in the previous comparisons for runs AA, AC and BC.
Run CC involves the largest channel width. Based on the evidence noted in the previous subsection, it
is expected that the mean velocity and granular temperature varied to some degree across the channel
width. These variations were not accurately accounted for in the theoretical analysis. Figure 9 compares
the measured velocity profiles for runs BC (b = 24σ ) and CC (b = 32σ ). For the wider channel, the flow
depth is larger and the surface velocity is smaller. This same kind of effect of channel width on the flow was
observed in the experiments of Jop et al. [39]. Some preliminary exploratory calculations were performed
with lower values of the wall friction angle in a crude attempt to model the flows in the central region of the
channel away from the frictional side walls. The effect was to increase the depth of the flowing region and
to modify the shape of the velocity profiles to look more like the observations. The experimental values
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Fig. 7 Comparison of
streamwise mean velocity
profiles for Jesuthasan’s
[41] runs AC (circle data
points) and BC (triangles)
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of R are somewhat below the predicted values (see Fig. 8(d)). Again, the width averaged granular-flow
analysis is probably responsible in part for the inaccuracies. It would be worthwhile to perform a full
three-dimensional flow analysis in an attempt to accurately predict the flows in the wider channels.

5 Concluding remarks

1. The present work has delineated a theory intended to model granular flows that range from the high
concentration, quasi-static flow regime to the moderate and high concentration, collisional, rapid flow
regime. It can be regarded as an extension of the slow, high concentration, strain-rate fluctuation theory
of Savage [22] for disk-like particles. We began with the granular-flow kinetic theory of Jenkins [16]
for identical spherical, smooth, inelastic particles that is capable of handling the rapid flow, collisional
regime and appended to it quasi-static terms that have forms patterned after the corresponding terms
in the equations of Savage [22].
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Fig. 8 Variation of flow quantities with depth y. Predictions compared with data from experiment CC of Jesuthasan [41]
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Fig. 9 Comparison of
streamwise mean velocity
profiles for Jesuthasan’s
[41] runs BC (triangle
data points) and CC
(squares)
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2. The resulting theory was applied to examine free-surface granular flow down a heap contained between
two rough vertical side walls. This is a particularly interesting rheological case study since, in one very
simple flow geometry, the behaviour of the granular flow spans the full range from the rapid flow, grain-
inertia regime near the upper surface to the quasi-static regime or even a static state deep into the pile.
Boundary conditions that involve particle velocity, stress, granular temperature and solids fraction both
at the upper free surface and at the vertical, frictional side walls were considered. The existence of the
frictional side walls will lead to three-dimensional flow fields. However, the present work was restricted
to the case of relatively narrow gaps between the vertical side walls such that some variables could
be averaged over the width, thereby reducing the problem to a two-dimensional flow. The resulting
equations of motion were integrated to obtain depth profiles of mean velocity, granular temperature,
solids fraction and the Savage–Jeffrey parameter.

3. Detailed comparisons were made with particle-tracking experiments of Jesuthasan [41]. When the gap
between the vertical side walls is fairly narrow, good agreement was found between predicted profiles
of the mean velocities and granular temperatures, and those measured by Jesuthasan [41]. The compar-
isons for the widest gap were not as good. This is probably due to the existence of variations of mean
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velocity and granular temperature across the channel width that were not accurately accounted for in
the theoretical analysis.

4. The predictions of the Savage–Jeffrey parameter R were also compared with the experimental values
measured by Jesuthasan [41]. It is difficult to accurately determine the experimental values of R and
the results presented show some scatter. One approximation that has been proposed for the solution
of the granular-temperature equation (cf. [54]) is to assume that there is a balance between the shear
work term and the collisional energy dissipation and to neglect the other terms in the fluctuation energy
equation. This assumption would yield a constant value for R over the depth. In the present work it was
found that R was not constant; it decayed with depth due to the presence of side-wall friction. Thus,
some care is advised in using the above mentioned approximation for the energy equation.

5. Further calculations of three-dimensional granular flows for wide channels are worthwhile. The exper-
iments of Jop et al. [39] revealed that the depth of the flowing region increased and the upper-surface
velocity decreased when the width of the channel was increased. The experiments of Jesuthasan [41]
involved much narrower channels than those of Jop et al. [39], but these same trends were evident.
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